Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil.

نویسندگان

  • T R Pasic
  • D R Moore
  • E W Rubel
چکیده

Activity-dependent transneuronal regulation of neuronal soma size has been studied in the medial nucleus of the trapezoid body and ventral cochlear nucleus of adolescent gerbils. Cochlear ablation or tetrodotoxin has been used to eliminate afferent electrical activity in auditory nerve fibers permanently or for 24 or 48 hours. Previous studies have shown that the cross-sectional area of spherical cell somata in the ipsilateral anteroventral cochlear nucleus decreases within 24 hours of electrical activity blockade with tetrodotoxin, which is fully reversible when activity is restored. The present findings extend this work by directly comparing the results of unilateral blockade of auditory nerve action potentials or unilateral cochlear ablation on the size of spherical and globular cell bodies in the ventral cochlear nucleus with changes produced by the same manipulations in third-order cells, principal neurons in the medial nucleus of the trapezoid body. Soma size in both ventral cochlear nucleus cell types decreases reliably by 24 hours after cochlear removal or eighth nerve activity blockade by tetrodotoxin. Soma size of neurons in the contralateral medial nucleus of the trapezoid body decreases 48 hours, but not 24 hours, after either manipulation. When activity in auditory nerve fibers is allowed to resume for 7 days following a 48-hour activity blockade, soma size fully recovers in the medial nucleus of the trapezoid body as well as in ventral cochlear nucleus neurons. We also report that the cross-sectional area of neuronal soma in the medial nucleus of the trapezoid body is larger in lateral regions of medial nucleus of the trapezoid body (low-frequency representation) than in the medial regions of the nucleus (high-frequency representation). We conclude that cell body size changes in brainstem auditory neurons are reversible and that the signals associated with the loss and subsequent recovery of soma size are activity related. However, the delayed effect of activity deprivation in the medial nucleus of the trapezoid body suggests that trophic substances released by afferent axons may contribute to the maintenance of anatomical characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Interaction between the Shell Sub-Region of the Nucleus Accumbens and the Ventral Tegmental Area in Response to Morphine: an Electrophysiological Study

This study has examined the functional importance of nucleus accumbens (NAc)-ventral tegmental area (VTA) interactions. As it is known, this interaction is important in associative reward processes. Under urethane anesthesia, extracellular single unit recordings of the shell sub-region of the nucleus accumbens (NAcSh) neurons were employed to determine the functional contributions of the VTA to...

متن کامل

Decoding the auditory corticofugal systems q Jeffery

The status of the organization of the auditory corticofugal systems is summarized. These are among the largest pathways in the brain, with descending connections to auditory and non-auditory thalamic, midbrain, and medullary regions. Auditory corticofugal influence thus reaches sites immediately presynaptic to the cortex, sites remote from the cortex, as in periolivary regions that may have a c...

متن کامل

Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of Fmr1 Knockout Mice

Fragile X syndrome (FXS), the most common monogenic cause of autism, is often associated with hypersensitivity to sound. Several studies have shown abnormalities in the auditory brainstem in FXS; however, the emergence of these auditory phenotypes during development has not been described. Here, we investigated the development of phenotypes in FXS model [Fmr1 knockout (KO)] mice in the ventral ...

متن کامل

Recurrent Inhibition to the Medial Nucleus of the Trapezoid Body in the Mongolian Gerbil (Meriones Unguiculatus)

Principal neurons in the medial nucleus of the trapezoid body (MNTB) receive strong and temporally precise excitatory input from globular bushy cells in the cochlear nucleus through the calyx of Held. The extremely large synaptic currents produced by the calyx have sometimes led to the view of the MNTB as a simple relay synapse which converts incoming excitation to outgoing inhibition. However,...

متن کامل

Development of Cat-301 immunoreactivity in auditory brainstem nuclei of the gerbil.

The developing brainstem auditory system has been studied in detail by using anatomical and physiological techniques. However, it is not known whether immature auditory neurons exhibit different molecular characteristics than those of physiologically mature neurons. To address this issue, we examined the distribution of Cat-301 immunoreactivity in the developing auditory brainstem of gerbils. C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 348 1  شماره 

صفحات  -

تاریخ انتشار 1994